3.3057 \(\int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx\)

Optimal. Leaf size=155 \[ \frac {b \sqrt {d} \left (4 a c-b^2 d\right ) \tanh ^{-1}\left (\frac {b d+2 c \sqrt {\frac {d}{x}}}{2 \sqrt {c} \sqrt {d} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{8 c^{5/2}}+\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c} \]

[Out]

1/8*b*(-b^2*d+4*a*c)*arctanh(1/2*(b*d+2*c*(d/x)^(1/2))/c^(1/2)/d^(1/2)/(a+c/x+b*(d/x)^(1/2))^(1/2))*d^(1/2)/c^
(5/2)-2/3*(a+c/x+b*(d/x)^(1/2))^(3/2)/c+1/4*b*(b*d+2*c*(d/x)^(1/2))*(a+c/x+b*(d/x)^(1/2))^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1970, 1341, 640, 612, 621, 206} \[ \frac {b \sqrt {d} \left (4 a c-b^2 d\right ) \tanh ^{-1}\left (\frac {b d+2 c \sqrt {\frac {d}{x}}}{2 \sqrt {c} \sqrt {d} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{8 c^{5/2}}+\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sqrt[d/x] + c/x]/x^2,x]

[Out]

(b*(b*d + 2*c*Sqrt[d/x])*Sqrt[a + b*Sqrt[d/x] + c/x])/(4*c^2) - (2*(a + b*Sqrt[d/x] + c/x)^(3/2))/(3*c) + (b*S
qrt[d]*(4*a*c - b^2*d)*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[d]*Sqrt[a + b*Sqrt[d/x] + c/x])])/(8*c^(5
/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 1341

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Dist[k, Subst[I
nt[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] &
& FractionQ[n]

Rule 1970

Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> -Dist[d^(m + 1), Subst
[Int[(a + b*x^n + (c*x^(2*n))/d^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2,
 -2*n] && IntegerQ[2*n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \sqrt {a+b \sqrt {x}+\frac {c x}{d}} \, dx,x,\frac {d}{x}\right )}{d}\\ &=-\frac {2 \operatorname {Subst}\left (\int x \sqrt {a+b x+\frac {c x^2}{d}} \, dx,x,\sqrt {\frac {d}{x}}\right )}{d}\\ &=-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c}+\frac {b \operatorname {Subst}\left (\int \sqrt {a+b x+\frac {c x^2}{d}} \, dx,x,\sqrt {\frac {d}{x}}\right )}{c}\\ &=\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c}+\frac {\left (b \left (4 a c-b^2 d\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+\frac {c x^2}{d}}} \, dx,x,\sqrt {\frac {d}{x}}\right )}{8 c^2}\\ &=\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c}+\frac {\left (b \left (4 a c-b^2 d\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {4 c}{d}-x^2} \, dx,x,\frac {b+\frac {2 c \sqrt {\frac {d}{x}}}{d}}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{4 c^2}\\ &=\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c}+\frac {b \sqrt {d} \left (4 a c-b^2 d\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \left (b+\frac {2 c \sqrt {\frac {d}{x}}}{d}\right )}{2 \sqrt {c} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{8 c^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.13, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + b*Sqrt[d/x] + c/x]/x^2,x]

[Out]

Integrate[Sqrt[a + b*Sqrt[d/x] + c/x]/x^2, x]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.13, size = 331, normalized size = 2.14 \[ \frac {\sqrt {\frac {a x +\sqrt {\frac {d}{x}}\, b x +c}{x}}\, \left (-3 \left (\frac {d}{x}\right )^{\frac {3}{2}} b^{3} \sqrt {c}\, x^{3} \ln \left (\frac {\sqrt {\frac {d}{x}}\, b x +2 c +2 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \sqrt {c}}{\sqrt {x}}\right )+12 \sqrt {\frac {d}{x}}\, a b \,c^{\frac {3}{2}} x^{2} \ln \left (\frac {\sqrt {\frac {d}{x}}\, b x +2 c +2 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \sqrt {c}}{\sqrt {x}}\right )+6 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, a \,b^{2} d \,x^{2}+6 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \left (\frac {d}{x}\right )^{\frac {3}{2}} b^{3} x^{3}-12 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \sqrt {\frac {d}{x}}\, a b c \,x^{2}-6 \left (a x +\sqrt {\frac {d}{x}}\, b x +c \right )^{\frac {3}{2}} b^{2} d x +12 \left (a x +\sqrt {\frac {d}{x}}\, b x +c \right )^{\frac {3}{2}} \sqrt {\frac {d}{x}}\, b c x -16 \left (a x +\sqrt {\frac {d}{x}}\, b x +c \right )^{\frac {3}{2}} c^{2}\right )}{24 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, c^{3} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+(d/x)^(1/2)*b+c/x)^(1/2)/x^2,x)

[Out]

1/24*((a*x+(d/x)^(1/2)*b*x+c)/x)^(1/2)/x*(-3*ln(((d/x)^(1/2)*b*x+2*c+2*(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*c^(1/2))/
x^(1/2))*c^(1/2)*(d/x)^(3/2)*x^3*b^3+6*(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*(d/x)^(3/2)*x^3*b^3+6*(a*x+(d/x)^(1/2)*b*
x+c)^(1/2)*a*d*x^2*b^2+12*ln(((d/x)^(1/2)*b*x+2*c+2*(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*c^(1/2))/x^(1/2))*c^(3/2)*a*
(d/x)^(1/2)*x^2*b-6*(a*x+(d/x)^(1/2)*b*x+c)^(3/2)*d*x*b^2-12*(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*a*(d/x)^(1/2)*x^2*b
*c+12*(a*x+(d/x)^(1/2)*b*x+c)^(3/2)*(d/x)^(1/2)*x*b*c-16*(a*x+(d/x)^(1/2)*b*x+c)^(3/2)*c^2)/(a*x+(d/x)^(1/2)*b
*x+c)^(1/2)/c^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \sqrt {\frac {d}{x}} + a + \frac {c}{x}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sqrt(d/x) + a + c/x)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+\frac {c}{x}+b\,\sqrt {\frac {d}{x}}}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c/x + b*(d/x)^(1/2))^(1/2)/x^2,x)

[Out]

int((a + c/x + b*(d/x)^(1/2))^(1/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b \sqrt {\frac {d}{x}} + \frac {c}{x}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)**(1/2))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*sqrt(d/x) + c/x)/x**2, x)

________________________________________________________________________________________